BARC talk by Bartosz Walczak – University of Copenhagen

BARC > Events > BARC talk by Bartosz W...

BARC talk by Bartosz Walczak


Sparse Kneser graphs are Hamiltonian


For integers k≥1 and n≥2k+1, the Kneser graph K(n,k) is the graph whose vertices are the k-element subsets of {1,…,n} and whose edges connect pairs of subsets that are disjoint. The Kneser graphs of the form K(2k+1,k) are also known as the odd graphs. We settle an old problem due to Meredith, Lloyd, and Biggs from the 1970s, proving that for every k≥3, the odd graph K(2k+1,k) has a Hamilton cycle. The proof is based on a reduction of the Hamiltonicity problem in the odd graph to the problem of finding a spanning tree in a suitably defined hypergraph on Dyck words. As a byproduct, we obtain a new proof of the so-called middle levels conjecture. This is joint work with Torsten Mütze and Jerri Nummenpalo.


Read more about Bartosz Walczak here